A VISCOSITY FORMULA FOR BINARY MIXTURES, THE ASSOCIATION DEGREES OF CONSTITUENTS BEING TAKEN INTO CONSIDERATION. II.

By Tetsuya ISHIKAWA.

Received December 1, 1928. Published February 28, 1929.

In the former paper, (1) the writer proposed a viscosity formula for physical binary mixtures of the form:

$$\eta = \eta_1 + (\eta_2 - \eta_1) \frac{k_2 a_2 z_m}{k_1 a_1 (1 - z_m) + k_2 a_2 z_m}$$

where η , a, k with suffixes 1 and 2 signify the viscosities, the association degrees and the field-constants of components 1 and 2 respectively; z_m a formal molar fraction of component 2. The present paper is a continuation of it.

The relation between k and molecular structure. The application of the formula to the hitherto published data in the literature having been

Table 1.

Substance	k	D (\lambda=∞) Observers	$\sigma \times 10^8$ Observers
C_6H_6	1	{ 2.25 (20°) Linebarger 2.28 (25°) Krchma & Williams	4.10 Rappenecker
$\mathrm{C_6H_5CH_3}$	1.23	{ 2.36 (20°) Linebarger 2.38 (25°) Krchma & Williams	
CH ₃ COOCH ₃	1.67	6.68 (25°) ,, ,,	3.91 ,,
$\mathrm{CH_3COOC_2H_5}$	1.64	6.03 (25°) ,, ,,	4.27 ,,
CHCl ₃	1.50	{ 5.13 (20°) Linebarger 4.77 (25°) Krchma & Williams	
CCl ₄	0.63	{ 2.24 (20°) Linebarger { 2.23 (25°) Krchma & Williams	4.60 Ishikawa
CS ₂	0.76	{ 2.58 (20°) Linebarger { 2.63 (25°) Williams & Ogg	3.91 ,,
CH ₃ OH	0.36	31.2 (20°) Abegg & Seitz	3.04 ,,
C_2H_5OH	0.34	25.8 (20°) ,, ,,	3.43 ,,
n-C ₃ H ₇ OH	0.31	22.2 (20°) ,, ,,	3.72 ,,
H₂O	0.21	81.1 (18°) Turner	2.61 Rappenecker
HCONH ₂	0.35		
CH ₃ COOH	0.57	9.7 (18°) Francke	1.95 Ishikawa

Linebarger, Z. physik. Chem., 20 (1896), 131.

Krchma & Williams, J. Am. Chem. Soc., 49 (1927), 2408.

Williams & Ogg, J. Am. Chem. Soc., 50 (1928), 94.

Rappenecker, "Landolt-Tabellen," recalculated by taking N≠2.705×10¹⁹.

Ishikawa, As yet unpublished paper "Refractivity of binary mixture and its relation to molecular size of components."

⁽¹⁾ This Bulletin, 4 (1929), 5.

made with satisfactory results, the field constant k proves to be, as is expected, a particular constant for a particular liquid.

Now, in order to find whether or no there exists any relation between k and molecular structure, we calculate the relative values of k by putting that of C_6H_6 as unity. The values thus obtained are collected in the following table. It also shows the molecular diameter σ and dielectric constant $D(\lambda=\infty)$. Comparing k with these two values we find an interesting relation: k of homologous liquids is proportional to the product $D \cdot \sigma$ as recognized from Table 2.

Substance	k.	$D \cdot \sigma \cdot 10^8$	$rac{D \cdot \sigma}{k} \cdot 10^8$
СН3ОН	0.36	$31.2 \times 3.04 = 94.9$	264
C_2H_5OH	0.34	$25.8 \times 3.43 = 88.5$	260 263
n-C ₃ H ₇ OH	0.31	$22.2 \times 3.72 = 82.6$	266
$\mathrm{CH_{3}COOCH_{3}}$	1.67	$6.68 \times 3.91 = 26.1$	15.6
$\mathrm{CH_3COOC_2H_5}$	1.64	$6.03 \times 4.27 = 25.7$	$\left\{ \begin{array}{c} 15.6 \\ 15.7 \end{array} \right\}$ 15.6

Table 2.

Extension to gaseous mixtures. The author's formula is transformed into

$$\eta = \frac{\eta_1}{1 + \frac{k_2 a_2}{k_1 a_1} \frac{z_m}{1 - z_m}} + \frac{\eta_2}{1 + \frac{k_1 a_1}{k_2 a_2} \frac{1 - z_m}{z_m}}.$$

As we have $a_1=a_2=1$ for a gaseous mixture,

$$\eta = \frac{\eta_1}{1 + \frac{k_2}{k_1}} \frac{z_m}{1 - z_m} + \frac{\eta_2}{1 + \frac{k_1}{k_2}} \frac{1 - z_m}{z_m}$$

Putting $\frac{k_2}{k_1} = K$, it becomes,

Thiesen⁽¹⁾ proposed the following viscosity formula for a gaseous mixture:

⁽¹⁾ Thiesen, Verh. d.D. phys. Ges., 4 (1902), 357.

$$\eta = \frac{\eta_1}{1 + A \frac{z_v}{1 - z_v}} + \frac{\eta_2}{1 + B \frac{1 - z_v}{z_v}}, \quad A = \frac{a_{12}}{a_{11}}, \quad B = \frac{a_{21}}{a_{22}}.$$

In which a_{11} , a_{12} , a_{22} , a_{21} are empirical constants as defined by him "Diffusions-konstante," and z_v a volume fraction of component 2.

Now that the equality of molecular volumes of all the gases is universally acceptable, the above formula can be rewritten as follows:

Comparing (I) and (II) we see that if $B=\frac{1}{A}$ holds good in (II) they are quite equivalent.

That Thiesen's formula gives more concordant values with experiments than those of Puluj's and of Sutherland's has been verified successively by Kleint, (1) Tanzler and Gille, (3) from whose results we can examine in what pairs the equality of A to $\frac{1}{R}$ holds.

Pairs	t°c.	A	B	$B:\frac{1}{A}$	Observers
O ₂ ———H ₂	15 100 183	0.373 0.353 0.388	1.362 1.662 1.331	0.508 0.587 0.516	Kleint
O ₂ N ₂	15 100 183	0.456* 0.93 0.48	2.443 1.10 2.32	1.11 1.02 1.11	Kleint
N ₂ H ₂	15 100 183	0.23 0.20 0.215	3.57 4.988 4.297	0.82 1.00 0.924	Kleint
А ——Не	15 100 183	0.343 0.375 0.446	2.032 1.957 1.692	$0.697 \\ 0.734 \\ 0.747$	Tänzler
HeH ₂	10 15 100	0.847 0.875 0.9203	1.170 1.167 1.110	0.991 1.021 1.021	Gille

Table 3.

⁽¹⁾ Kleint, Verh. d. D. phys. Ges., 7 (1905), 145.

⁽²⁾ Tänzler, Verh. d. D. phys. Ges., 8 (1906), 222.

⁽³⁾ Gille, Ann. Phys., 48 (1915), 836.

As seen from the above table, that equality $B = \frac{1}{A}$, i.e.,

$$a_{12}=a_{22}, \qquad a_{21}=a_{11}$$

is not satisfied except in the cases O2-N2 and He-H2.

The value $B:\frac{1}{A}$ seems to be apparently independent of temperature; its deviation from unity is the more distinct, the more difference there is in the molecular velocities of the components.

From this and the foregoing results we conclude that the diffusion effect of molecules which makes a great rôle in a gaseous mixture can be left out of consideration in a liquid mixture.

Application of the formula to any binary mixture accompanied with a chemical change. As stated before, the viscosity of a chemically indifferent (or physical) binary mixture can completely be expressible by

$$\eta = \eta_1 + (\eta_2 - \eta_1) \frac{\left(\frac{k_2 a_2}{k_1 a_1}\right) z_m}{(1 - z_m) + \left(\frac{k_2 a_2}{k a_1}\right) z_m}.$$

But when a chemical reaction takes place in admixture, the viscosity η is no more identical to that calculated by the above formula. The deviation $\delta = \eta - \eta_0$ which we call hereafter "solvation viscosity," here η_0 being the calculated value assuming there no chemical change on mixing, may depend entirely upon the mutual molecular reaction between the two constituents.

If a part of component 1 and a part of component 2, at z_m — concentration of component 2, enter into a reaction, which occurs among ν_1 molecules of the former and ν_2 molecules of the latter to form a molecular compound or aggregate, then the solvation viscosity may be assumed to be

$$\delta = \eta - \eta_0 \propto (1 - z_m)^{\nu_1} \cdot z_m^{\nu_2} = C \cdot z_m^{\nu_2} \cdot (1 - z_m)^{\nu_1},$$

in which C is a proportional constant.

For test of the postulation, three cases CH₃COOH-H₂O, CH₃OH-H₂O, and C₂H₅OH-H₂O have been taken, the calculated results being recorded in the last column of each table of the following.

				-	
z-CH ₃ COOH	z_m -CH $_3$ COOH	η	η ₀	6	$\frac{\delta}{z_m(1-z_m)}$
0.00	0,0000	0.00895			
0.10	0.0323	1076	0.00905	0.00171	0.055
0.20	0.0698	1282	917	365	0.057
0.25	0.0910	1359	923	436	0.053
0.30	0.1140	1497	930	567	0.056
0.00	0.1140	1401	300	001	0.000
0.40	0.1677	1701	946	755	0.054
0.50	0.2417	1905	967	938	0.051
0.60	0.3104	2092	986	1106	0.052
0.70	0.4120	2326	1013	1313	0.054
0.75	0.4737	2370	1028	1342	0.054
00	0.1.01	2010	1020	1012	0.001
0.80	0.5455	2404	1046	1358	0.055
0.90	0.7300	2128	1088	1040	0.053
0.95	0.8510	1698	1113	585	(0.046)
1.00	1.0000	1143		000	0.054
1.00	2.5000	1140			0.004

Table 4. H₂O-CH₃COOH, 25°C (Noack).(1)

$$\frac{k_2 a_2}{k_1 a_2} = \frac{0.57 \times 1.51}{0.21 \times 3.18} = 1.29, \quad \gamma_0 = \gamma_1 + (\gamma_2 - \gamma_1) \frac{1.29 z_m}{(1 - z_m) + 1.29 z_m}.$$

The constancy of $\frac{\delta}{z_m(1-z_m)}$ holds strictly at all concentrations, and hence a molecular compound or hydrate CH₃COOH·H₂O exists evidently in solution.

Table 5. H₂O-CH₃OH, 25°C (Dunstan).⁽²⁾

z .CH $_3$ OH	z_m -CH $_3$ OH	η	η ₀	8	$\frac{\delta}{z_m(1-z_m)^2}$
0.0000 0.0683 0.1007 0.1974 0.2147	0.0000 0.0396 0.0592 0.1216 0.1333	0.00891 0.01055 0.01157 0.01378 0.01403	0.00878 872 851 847	0.00177 285 527 556	0.049 0.054 0.056 0.055
0.3592 0.3782 0.3785 0.4071 0.4619	0.2398 0.2550 0.2553 0.2787 0.3257	0.01600 0.01567 0.01575 0.01570 0.01570	812 807 807 799 784	788 760 768 771 786	0.057 0.054 0.054 0.053 0.053

⁽¹⁾ K. Noack, "Landolt-Tabellen."
(2) A. E. Dunstan, J. Chem. Soc., 85 (1904), 817;

			,		
z-CH ₃ OH	z_m -CH $_3$ OH	η	η ₀	ô	$\frac{\delta}{z_m(1-z_m)^2}$
0.4956 0.5131 0.5282 0.5535	0.3560 0.3724 0.3865 0.4109	0.01532 0.01540 0.01490 0.01475	774 768 763 755	758 772 727 720	0.051 0.053 0.050 0.051
0.5855	0.4430	0.01427	745	682	0.050
0.5861 0.6106 0.6653	0.4440 0.4686 0.5280	$0.01399 \\ 0.01370 \\ 0.01282$	744 736 716	655 634 566	0.048 0.049
0.7319 0.7741	0.6056 0.6585	$0.01167 \\ 0.01105$	690 671	477 434	0.051 0.057
0.7964 1.0000	0.6876 1.0000	0.01003 0.005525	661	342	0.051

Table 5. (Continued.)

$$\frac{k_2 a_2}{k_1 a_1} = \frac{0.36 \times 1.78}{0.21 \times 3.18} \doteq 0.96, \quad \gamma_0 = \gamma_1 + (\gamma_2 - \gamma_1) \frac{0.96 z_m}{(1 - z_m) + 0.96 z_m}.$$

 $\frac{k_2a_2}{k_1a_1} = \frac{0.36 \times 1.78}{0.21 \times 3.18} = 0.96 \;, \quad \gamma_0 = \gamma_1 + (\gamma_2 - \gamma_1) \frac{0.96z_m}{(1 - z_m) + 0.96z_m} \;.$ For the range studied $\frac{\delta}{z_m(1 - z_m)^2}$ keeps to be constant. The fact shows that a hydrate $\text{CH}_3\text{OH} \cdot 2\,\text{H}_2\text{O}$ exists in solution.

Table 6. H₂O-C₂H₅OH, 25°C (Dunstan).(1)

z-C ₂ H ₅ OH	z_m -C ₂ H ₅ OH	η	η ₀	6	$\frac{\delta}{z_m(1-z_m)^3}$	$\frac{\delta}{z_m(1-z_m)^2}$
0.0000	0.0000	0.00891				
0.2071	0.0986	1829	0.00907	0.00922	0.126	
0.2466	0.1159	1851	910	941	0.148	
0.2963	0.1415	2129	914	1215	0.136	
0.3240	0.1580	2162	917	1245	0.135	
0.3739	0.1893	2290	922	1368	0.136	
0.3826	0.1952	2301	923	1378	0.136	
0.3965	0.2044	2343	925	1418	0.138	
0.4121	0.2153	2327	927	1400	0.135	
0.4557	0.2468	2351	933	1418	0.134	
0.4617	0.2513	2368	934	1434	0.136	
0.4772	0.2631	2354	936	1418	0.135	
0.5020	0.2830	2337	939	1398	0.134	
0.5558	0.3284	2273	948	1325	0.133	
0.5583	0.3309	2273	948	1324	0.134	
0.5751	0.3462	2247	952	1295	0.134	
0.6015	0.3714	2243	956	1287	0.139	
0.6017	0.3714	2240	957	1287	0.139	
0.6049	0.3745	2226	957	1269	0.138	
0.6106	0.3802	2212	958	1254	0.138	(0.086)

⁽¹⁾ A. E. Dunstan, & F.B. Thole, J. Chem. Soc., 95 (1909), 1556.

z-C ₂ H ₅ OH	z_m -C ₂ H ₅ OH	η	η ₀	δ	$\frac{\delta}{z_m(1-z_m)^3}$	$\frac{\delta}{z_m(1-z_m)^2}$
0.6185 0.6536 0.6585 0.7054 0.7390	0.3883 0.4244 0.4299 0.4839 0.5254	2173 2104 2112 1995 1957	960 967 968 979 988	1213 1137 1144 1016 969	0.137 (0.140) (0.140) (0.153) (0.173)	(0.084) 0.081 0.082 0.079 0.082
0.7809 0.8020 1.0000	0.5825 0.6132 1.0000	1804 1744 1115	1002 1010	802 734	0.136	0.079 0.081 0.081

Table 6. (Continued.)

$$\frac{k_2a_2}{k_1a_1} = \frac{0.34 \times 1.37}{0.21 \times 3.18} = 0.70 , \quad \eta_0 = \eta_1 + (\eta_2 - \eta_1) \frac{0.70z_m}{(1 - z_m) + 0.70z_m} \cdot$$

The constancy of $\frac{\delta}{z_m(1-z_m)^3}$ holds for the range $z_m=0.1\sim0.4$, and for higher concentrations $\frac{\delta}{z_m(1-z_m)^2}$ keeps to be constant.

This suggests that a hydrate $C_2H_5OH \cdot 3H_2O$ exists in solution up to 40 mol. % of C_2H_5OH , and a hydrate $C_2H_5OH \cdot 2H_2O$ exists at higher concentrations than 40 mol. % of C_2H_5OH .

The Institute of Physical and Chemical Research, Tokyo.